WSP6582C

SwitchPro Family High Fidelity Stereo SPDT Switch with Pop and Click Suppression

Descriptions

With SwitchPro technology, The WSP6582C is a Dual SPDT analog switch with ultra-low distortion, high OFF-Isolation for special stereo audio applications with negative swing audio signals capacity that features ultra-low Ron of 0.2Ω (typical) at 3.3 V VCC.

The WSP6582C operates a single power supply over a wide range from 3.0 V to 4.5 V and 1.8 V logic compatible with ultra high PSRR. With soft-start feature that eliminates pops and clicks associated at any application conditions likes switched, enable/disable and power-up.

With superior THD +N performance and other high performance, the WSP6582C is an ideal device for $\mathrm{Hi}-\mathrm{Fi}$ system applications.

The WSP6582C is available in 12 Ball Wafer Level Chip Scale Package (WLCSP) with $1.2 \times 1.6 \times 0.5 \mathrm{~mm}$. All products is Pb -free and Halogen-free.

Features

- Single supply range operating from 3.0 V to 4.5 V
- -118 dB THD +N into $100 \mathrm{k} \Omega$ load at 2 V rms
- -114 dB THD +N into 32Ω load at 2 V rms
- Signal-to-Noise (SNR) Ratio 132dBA
- 100 dB PSRR at 10 kHz
- 137 dB crosstalk \& separation
- Adjust soft-start with external capacitor

Applications

- Hi-Fi Smartphones and Portable Device
- Hi-Fi SACD/DVD players
- High Quality Home Theaters
http//:www.willsemi.com

WLCSP-12B (Bottom view)

Pin configuration (Top view)

Marking

Y = Year code
W = Week Code

Order information

Device	Package	Shipping
WSP6582C-12/TR	WLCSP-12B	3000/Reel\&Tape

Pin descriptions

Pin Number	Symbol	
A1	L1	Left normally closed pin
A2	L	Left common pin
A3	L2	Left normally open pin
B1	VCC	Power supply
B2	SEL1	Select control pin for Left
B3	CAP	Soft-start rising time control with external ceramic capacitor
C1	MUTE	Signal mute control pin
C2	SEL2	Select control pin for Right
C3	GND	Ground
D1	R1	Right normally closed pin
D2	R	Right common pin
D3	R2	Right normally open pin

Block Diagram

Figure 1. WSP6582C Block Diagram

Function Table

MUTE	SEL1	SEL2	L1	L2	R1	R2
0	0	0	ON	OFF	ON	OFF
0	0	1	ON	OFF	OFF	ON
0	1	0	OFF	ON	ON	OFF
0	1	1	OFF	ON	OFF	ON
1	X	X	OFF	OFF	OFF	OFF

Note: $\mathrm{X}=0$ or 1, don't care

Typical Applications

Figure 2. Hi-Fi Phone Application Block Diagram

Recommend operating ratings ${ }^{(2)}$

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	$3.3 \sim 4.5$	V
Digital Control Input Voltage	$\mathrm{V}_{\text {IN }}$	$0.0 \sim \mathrm{~V}_{\mathrm{CC}}$	V
Analog Input/Output Voltage (L1,L2,R1,R2,L,R)	$\mathrm{V}_{\text {IS }}$	$-3.3 \sim \mathrm{~V}_{\mathrm{cc}}$	V
Operating Temperature	T_{A}	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$

Note:

1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

DC Electronics Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{CAP}=0.1 \mathrm{uF}$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Analog Switch Characteristics						
Analog Signal Range	Vis	VCC: $3.3 \sim 4.2$		2.5		Vrms
On-Resistance	Ron	$\begin{aligned} & \hline \mathrm{V}_{\text {S }}=-3.3 \mathrm{~V} \sim+3.3 \mathrm{~V} \\ & \text { lout }=100 \mathrm{~mA} \end{aligned}$		0.2		Ω
Ron Matching Between Channels	Δ Ron	$\begin{aligned} & \hline \mathrm{V}_{\text {IS }}=-3.3 \mathrm{~V} \sim+3.3 \mathrm{~V} \\ & \text { lout }=100 \mathrm{~mA} \end{aligned}$		0.0015		Ω
Ron Flatness	Rflat(on)	$\begin{aligned} & \hline \mathrm{V}_{\text {SI }}=-3.3 \mathrm{~V} \sim+3.3 \mathrm{~V} \\ & \text { lout }=100 \mathrm{~mA} \end{aligned}$		0.0015		Ω
Dynamic Characteristics						
Total Harmonic Distortion	THD+N	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{Vrms} @ \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$		-118		dB
Total Harmonic Distortion	THD+N	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{~V} \mathrm{rms} @ \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		-114		dB
Total Harmonic Distortion	THD+N	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 500 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{I}}=1.55 \mathrm{Vrms} \\ & @ R L=100 \mathrm{k} \Omega \end{aligned}$		-104		dB
Intermodulation Distortion	IMD	$\begin{aligned} & \text { Mode=CCIF } 19 \mathrm{k}+20 \mathrm{k} \\ & \text { Ratio }=1 \\ & \mathrm{~V}_{\mathrm{Is}}=500 \mathrm{mVrms} \\ & @ R \mathrm{~L}=100 \mathrm{k} \Omega \end{aligned}$		-122		dB
Dynamic/Transient Intermodulation Distortion	IMD	Mode=DIM100 VIS=1Vrms @ RL=100k Ω		-103		dB
Signal-to-Noise Ratio	SNR	$\mathrm{f}=10 \mathrm{~Hz}$ to 22 KHz , Inputs grounded $\mathrm{R}_{\mathrm{L}}=32 \Omega$ or $100 \mathrm{k} \Omega$		132		dBA
Stereo Channel Imbalance L1 and R1, L2 and R2	IMB	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}, \\ & \mathrm{RL}=100 \mathrm{k} \Omega \end{aligned}$		± 0.003		dB
Off isolation (Muting)	OIRR	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}, \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{R}}=2 \mathrm{Vrms} \\ & @ R=32 \Omega \\ & \text { MUTE=VCC SEL="X" } \end{aligned}$		127		dB
Crosstalk (Channel-to-Channel)	Xtalk	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}, \\ & \mathrm{~V}_{\mathrm{Is}}=2 \mathrm{~V} \mathrm{rms}, \end{aligned}$ Source Impedance $=0 \Omega$ $\mathrm{RL}=100 \mathrm{k} \Omega$		137		dB
Power Supply Ripple Rejection	PSRR	$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \\ & \mathrm{~V}_{\text {Is }}=0.1 \mathrm{Vrms}, \\ & \text { Inputs grounded } \end{aligned}$		100		dB
-3dB Bandwidth	BW	$\mathrm{RL}=50 \Omega$		50		MHz
On-to-Mute Time	TTRS-om	CAP $=0.1 \mathrm{uF}$		50		ns

Mute-to-On Time	TTRS-mo	CAP=0.1uF		160		ms
Turn-Off Time	Toff	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega \\ & \mathrm{MUTE}=0 \end{aligned}$		60		ns
Turn-On Time	Ton	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega \\ & \mathrm{MUTE}=0 \end{aligned}$		60		us
Break-Before-Make time	$\mathrm{T}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{~K} \Omega \\ & \text { MUTE }=0 \end{aligned}$		50		us
Lx, Rx Off capacitance	Coff	$\begin{aligned} & f=100 \mathrm{kHz}, \\ & V_{L x} \text { or } V_{R x}=V_{L} \text { or } V_{R}=0 V \end{aligned}$		15		pF
L, R On capacitance	Con	$\begin{aligned} & f=100 \mathrm{kHz}, \\ & V_{L x} \text { or } V_{R x}=V_{L} \text { or } V_{R}=0 V \end{aligned}$		30		pF
Power Supply Characteristics						
Supply quiescent current	Icc	MUTE=0V		190		uA
		MUTE=VCC		55		uA
Digital Input Characteristics						
Digital input logic high level	$\mathrm{V}_{\text {IH }}$	VCC=3.6~4.5	1.6			V
		VCC=3.0~3.6	1.5			V
Digital input logic low level	VIL	VCC=3.6~4.5			0.5	V
		VCC=3.0~3.6			0.4	V
Digital Input leakage current	lin				± 2.0	uA
SEL pull-down resistor	RPD			4		$\mathrm{M} \Omega$
MUTE pull-up resistor	Rpu			4		$\mathrm{M} \Omega$

Note:

3. Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
4. Ron matching between channels is calculated by subtracting the channel with the highest max Ron value from the channel with lowest max ron value.
5. Crosstalk is inversely proportional to source impedance.

Test Circuits

ON-Resistance (Ron)

Crosstalk (Xtalk)

Bandwidth (BW)

ON/OFF Time Waveforms (Ton / Toff)

Off isolation (OIRR)

THD+N

Package outline dimensions

WLCSP-12B

Top View

Bottom View

Side View

Symbol	Dimensions in millimeter		
	Min.	Typ.	Max.
X	1.180	1.205	1.230
Y	1.610	1.635	1.660
X1		0.077	
X2		0.400	0.270
X3	0.230	0.250	
Y1		0.400	0.590
Y2		0.077	0.355
Z	0.480	0.535	0.185
Z2	0.305	0.330	0.165

